HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells
نویسندگان
چکیده
The role of dental pulp cells (DPCs) in hard dental tissue regeneration had received increasing attention because DPCs can differentiate into odontoblasts and other tissue‑specific cells. In recent years, epigenetic modifications had been identified to serve an important role in cell differentiation, and histone deacetylase (HDAC) inhibitors have been widely studied by many researchers. However, the effects of HDAC4 and HDAC5 on the differentiation of DPCs and the precise molecular mechanisms remain unclear. The present study demonstrated that LMK‑235, a specific human HDAC4 and HDAC5 inhibitor, increased the expression of specific odontoblastic gene expression levels detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in dental pulp cells, and did not reduce cell proliferation tested by MTT assay after 3 days in culture at a low concentration. In addition, the mRNA and protein expression levels of dentin sialophosphoprotein, runt‑related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin were evaluated by RT‑qPCR and western blotting, respectively. The increased gene and protein expression of specific markers demonstrated, indicating that LMK‑235 promoted the odontoblast induction of DPCs. ALP activity and mineralised nodule formation were also enhanced due to the effect of LMK‑235, detected by an ALP activity test and Alizarin Red S staining, respectively. Additionally, the vascular endothelial growth factor (VEGF)/RAC‑gamma serine/threonine‑protein kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway was tested to see if it takes part in the differentiation of DPCs treated with LMK‑235, and it was demonstrated that the mRNA expression levels of VEGF, AKT and mTOR were upregulated. These findings indicated that LMK‑235 may serve a key role in the proliferation and odontoblast differentiation of DPCs, and could be used to accelerate dental tissue regeneration.
منابع مشابه
HDAC5, a potential therapeutic target and prognostic biomarker, promotes proliferation, invasion and migration in human breast cancer
PURPOSE Histone deacetylase 5 (HDAC5) is an important protein in neural and cardiac diseases and a potential drug target. However, little is known regarding the specific role of HDAC5 in breast cancer (BC). We aimed to evaluate HDAC5 expression in human breast tumors and to determine the effects of the inhibition of HDAC5 expression in BC cells. EXPERIMENTAL DESIGN HDAC5 expression was evalua...
متن کاملBiphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways.
Odontoblast differentiation during physiological and reparative dentinogenesis is dependent upon multiple signaling molecules, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs) and Wingless/Integrated (Wnt) ligands. Recent studies in our laboratory showed that continuous exposure of primary dental pulp cultures to FGF2 exerted biphasic effects on the expression of m...
متن کاملTWIST1 promotes the odontoblast-like differentiation of dental stem cells.
Stem cells derived from the dental pulp of extracted human third molars (DPSCs) have the potential to differentiate into odontoblasts, osteoblasts, adipocytes, and neural cells when provided with the appropriate conditions. To advance the use of DPSCs for dentin regeneration, it is important to replicate the permissive signals that drive terminal events in odontoblast differentiation during too...
متن کاملIn Vitro Reparative Dentin: a Biochemical and Morphological Study
In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphological, biochemical and biomolecular methods. Alizarin red staining showed mineral deposition while t...
متن کاملCulture medium modulates the behaviour of human dental pulp-derived cells: technical note.
In vitro approaches have extensively been developed to study reparative dentinogenesis. While dental pulp is a source of unidentified progenitors able to differentiate into odontoblast-like cells, we investigated the effect of two media; MEM (1.8 mM Ca and 1 mM Pi) and RPMI 1640 (0.8 mM Ca and 5 mM Pi) on the behaviour of human dental pulp cells. Our data indicate that MEM significantly increas...
متن کامل